Extra re-exam - PoMS, 15/05/2014

- Write your name and student ID on the first page.
- Write your name on all pages and number the pages.
- This is NOT an open book exam only a regular calculator is allowed.
- You are allowed to bring one A4 page with your own notes (one side only)
- Pay attention to units. A numerical result without a unit will be considered wrong!
- You have **3 hours** to complete the exam.
- Note: $\mathcal{L}(t^n e^{-\alpha t}) = \frac{n!}{(s+\alpha)^{n+1}}$.

Question 1 (2 points)

- a) What is the Nyquist sampling theorem and explain its underlying principle.
- b) What is reluctance and explain qualitatively the working principle of a variable reluctance tachogenerator.
- c) What is the working principle behind Amplitude Modulation (AM) and explain how such a technique can help to reduce external interferences?
- d) What is a Schmitt trigger and what is its application? Describe briefly its working principle.

Question 2 (2 points)

The following results were obtained when a pressure transducer was tested in a laboratory under the following conditions:

- (I) Ambient temperature 25 °C, supply voltage 10 V (standard conditions)
- (II) Ambient temperature 25 °C, supply voltage 14 V
- (III) Ambient temperature 28 °C, supply voltage 10 V

Input (barg) Output (mA)	0	2	4	6	. 8	10
(I)	6	9.2	12.4	15.6	18.8	22
(II)	6	10.8	15.6	20.4	25.2	30
(III)	7	10.2	13.4	16.6	19.8	23

- a) Explain whether the environment variables are modifying, interfering, or both modifying and interfering.
- b) Determine the values of K_M , K_I , a, and K associated with the generalized model equation $O = (K + K_M \cdot I_M) \cdot I + a + K_I \cdot I_I$. Note down the units of the parameters!

Question 3 (2 points)

A potentiometer has a total length of 10 cm and a resistance of 200 Ω .

- a) Calculate the supply voltage so that the power dissipation is 1 W.
- b) Draw the Thévenin equivalent circuit for an 8 cm displacement.
- c) The potentiometer is connected to a recorder with a resistance R_L . Find R_L such that the recorder voltage is 7% less than the open circuit voltage at an 8 cm displacement.

Question 4 (2 points)

A temperature measurement system consists of a thermocouple, an amplifier, and a recorder. The thermocouple can be represented by a 1st order system with a time constant τ =10 s and a steady-state sensitivity of 10⁻⁴ V/°C. The amplifier has a multiplication factor of 10³. The recorder can be described by a 2nd order element with a natural undamped frequency ω_n =200 rad/s, a damping ratio of ξ =1.0, and a steady-state sensitivity of 10 °C/V.

- a) The true temperature changes suddenly by 10 °C from a steady-state condition. Find an expression of the change of the temperature given by the recorder.
- b) Estimate the bandwidth of the measurement system. Motivate your answer.

Question 5 (2 points)

A Copper (Cu)-Constantan (C) thermo-couple is used to measure the temperature T of a process. The temperature is obtained by coupling the thermo-couple to a voltmeter that consists internally of copper wires.

- a) Design and sketch a measurement system for which the voltage measured by a voltmeter (V) is proportional to the temperature difference $T T_{REF}$. The reference temperature T_{REF} is placed at 0°C by using an icebath as part of the setup. You may assume that the Seebeck coefficient α_{CuC} is constant for the temperature range considered in the system.
- b) The dynamic response of the system is given by

$$\frac{\Delta \tilde{V}}{\Delta \tilde{T}}(s) = \frac{\alpha_{\text{CuC}}}{1 + \tau s},$$

with the Seebeck coefficient $\alpha_{\text{CuC}}=60~\mu\text{V/°C}$ and the time constant $\tau=1$ s. At t=0, the temperature, T, increases linearly with a speed of 10 °C/s starting from a steady-state condition with a temperature of 100 °C. The voltage read by the voltmeter is connected to an indicator giving a temperature $T_{out}=V/\alpha_{\text{CuC}}$. Find an expression for the indicator temperature, T_{out} , as a function of time, t, and make a sketch of its time dependence.